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Abstract

This paper presents a fundamental study of the aeroelastic behavior of hypersonic vehicles. Two separate

configurations are examined. First, a typical cross-section analysis of a double-wedge airfoil in hypersonic flow is

performed using three different types of unsteady airloads: piston theory and complete Euler and Navier–Stokes

solutions based on computational fluid dynamics. The analysis of the double-wedge airfoil is used to justify the usage of

the simple aerodynamics for a reusable launch vehicle (RLV). Subsequently, the aeroelastic problem for a complete

vehicle that resembles an RLV in trimmed flight is considered, using approximate first-order piston theory

aerodynamics. The results provided for these configurations provide guidelines for approximate aeroelastic modelling

of hypersonic vehicles.

r 2004 Elsevier Ltd. All rights reserved.

1. Introduction and problem statement

Hypersonic aeroelasticity and aerothermoelasticity received considerable attention in the late 1950s and during the

1960s as evident from Bisplinghoff and Dugundji (1958), Garrick (1963), Hedgepeth and Widmayer (1963) and Laidlaw

and Wyker (1963) using various versions of piston theory, as well as other very approximate aerodynamic models. This

research activity was quite useful and it provided some basis for the aerothermoelastic design of the space shuttle. For a

considerable time, since that early period, there was only limited interest in this area until the advent of the National

Aerospace Plane (NASP) which motived new research in this field. In recent years, renewed activity in hypersonic flight

research has been stimulated by the need for a low-cost, single-stage-to-orbit (SSTO) or two-stage-to-orbit (TSTO)

reusable launch vehicle (RLV) and the long-term design goal of incorporating air breathing propulsion devices in this

class of vehicles. The X-33, an example of the former vehicle type, was a 1
2
scale, fully functional technology

demonstrator for the full-scale VentureStar. Another ongoing hypersonic vehicle research program is the NASA Hyper-

X experimental vehicle effort. Other activities are focused on the design of unmanned hypersonic vehicles that meet the

needs of the US Air Force. The present study is aimed at enhancing the fundamental understanding of the aeroelastic

behavior of vehicles that belong to this category and operate in a typical hypersonic flight envelope.

Vehicles in this category are based on a lifting body design. However, stringent minimum-weight requirements imply

a degree of fuselage flexibility. Aerodynamic surfaces, needed for control, are also flexible. Furthermore, to meet the

requirement of a flight profile that spans the Mach number range from 0 to 15, the vehicle must withstand severe

aerodynamic heating. These factors combine to produce unusual aeroelastic problems that have received only limited

attention in the past. Furthermore, it is important to emphasize that testing of aeroelastically scaled wind tunnel
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Nomenclature

A area

A flutter boundary eigenproblem matrix

a nondimensional offset between the elastic axis and the midchord, positive for elastic axis behind midchord

aN free-stream sound velocity

b semi-chord of the airfoil

CðYÞ orthogonal rotation matrix from the inertial axes to the body axes

Cp pressure coefficient

Cft;Cfr chord length of fin tip and root, respectively

c reference length, chord length of double-wedge airfoil

D domain of integration of the flexible body

DðYÞ transformation matrix relating the time derivatives of the Euler angles to the angular velocity vector

df distance from vehicle, c.g., to leading edge of canted fin root chord

de distance from vehicle, c.g., to aerodynamic center of elevon

eT thrust eccentricity

F nonconservative force vector, expressed in body axes
#F vector of distributed generalized forces

f ðxÞ function describing airfoil surface

g acceleration of gravity

h airfoil vertical displacement at elastic axis

hb depth distribution of equivalent plate trapezoidal segment

I identity matrix

Ia mass moment of inertia about the elastic axis

J matrix of mass moments of inertia of the deformed body

J� matrix of mass moments of inertia of the undeformed body

J0
xx; J

0
yy; J

0
zz; J

0
xy mass moments of inertia of the undeformed body

Ĵ0yy nondimensionalized mass moment of inertia for the undeformed hypersonic vehicle, 2J�
yy=ðpNAtl

3
lbÞ

K stiffness matrix

Ka;Kh spring constants in pitch and plunge, respectively; Ka ¼ Iao2
a;Kh ¼ mo2

h

L matrix of structural operators on u

L Lagrangian of the hybrid system, written as a function of the generalized coordinates

L̃ Lagrangian of the hybrid system, written as a function of quasi-coordinates
*L trim lift

L0 lift per unit span

L0
1;L

0
2;L

0
3 first-, second- and third-order piston theory lift components

l length

M moment component in the y-direction of the body axes

Mc Mach number at which flutter occurs

M moment vector written in terms of components along the body axes

MEA moment per unit span about the elastic axis

M1;M2;M3 first-, second- and third-order piston theory moment components

Mg generalized mass matrix

MN free-stream Mach number

m mass of the flexible body

m̂ nondimensionalized mass of the hypersonic vehicle, 2m=ðr
N

AtllbÞ
%m mass per unit area

Nm number of normal modes in truncated series
#n unit normal

O origin of the body axes

P arbitrary point on flexible body

p; q; r angular velocity components referred to body axes, in x-, y- and z-directions, respectively

ra radius of gyration

pl pressure on lower surface
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ps pressure on surface

pu pressure on upper surface

pN free-stream pressure

Q vector of discrete generalized forces
#Q vector of generalized forces used in modal expansion method

q vector of generalized coordinates

qN free-stream dynamic pressure

q̂ nondimensionalized pitch rate, llbq=V0z

qx; qy; qz; qFz; qFy vectors of the unknown power series coefficients for ux0; uy0; uz0;Fx;Fy; respectively
R0 position vector of origin of body axes with respect to the inertial axes

RI
0 R0; but with components given with respect to unit vectors of the inertial axes

r position vector of typical point P in the undeformed configuration with respect to the body axes

rp position vector of typical point P in the deformed body with respect to the inertial axes

Sa static mass moment of wing section about elastic axis

sf span of canted fin

T kinetic energy

t time

tk thickness distribution of kth layer of equivalent plate trapezoidal segment cover skin

t̂ nondimensional time, V0zt=llb
U strain energy

U0 strain energy density

UN;V free-stream velocity

u vector of elastic displacements

u0 vector of elastic displacements of the reference surface

Vg potential energy due to gravity

V0 velocity of origin of body axes, in body axis components

v time derivative of u with respect to a reference frame attached to the body axes

vp effective piston velocity

vp velocity vector of typical point P in the deformed body with respect to the inertial axes

X ;Z components of F in the x- and y-directions of the body axes, respectively

XI ;YI ;ZI inertial axes

x; y; z body axes

xa nondimensional offset between the elastic axis and center of gravity, positive for center of gravity behind

elastic axis

Dx vector of degrees of freedom for linearized model of the generic hypersonic vehicle
%Zu;lðx; yÞ initial curvature of vehicle upper ðuÞ or lower ðlÞ surface

Z0ðx; y; tÞposition of airfoil surface

Zc camber distribution of equivalent plate trapezoidal segment

Greek symbols

a angle of attack

as static angle of attack

g specific heat

gc climb angle

dð Þ variational symbol

dij Kronecker delta function

de elevon deflection

Dð Þ perturbed quantity

eT inclination of the thrust vector

zk modal damping of the kth mode

Z spanwise local coordinate of equivalent plate trapezoidal segment
#Zi nondimensionalized modal coordinate, Zi ði ¼ 1;y;NmÞ; Zi=llb
#ZNmþi nondimensionalized modal coordinate, ZNmþi ði ¼ 1;y;NmÞ; Zi=V0x

Z vector of generalized coordinates used in modal expansion
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models, a conventional practice in subsonic and supersonic flow, is not feasible in the hypersonic regime. Thus, the role

of aeroelastic simulations is more important for this flight regime than in any other flight regime.

Previous studies in this area can be separated into several groups. The first group consists of studies focusing on panel

flutter, which is a localized aeroelastic problem representing a small portion of the skin on the surface of the hypersonic

vehicle. Hypersonic panel flutter has been studied by a number of researchers, focusing on important effects such as

aerodynamic heating (Xue and Mei, 1990), composite (Gray and Mei, 1992; Abbas and Ibrahim, 1993) and nonlinear

structural models (Bein et al., 1993) and initial panel curvature (Nydick et al., 1995). It was noted in Nydick et al. (1995)

that piston theory may not be appropriate for the hypersonic regime and that hypersonic studies might have to use

unsteady aerodynamic loads based on the solution of the Navier–Stokes equations. A comprehensive review of this

research can be found in a recent survey paper (Mei et al., 1999).

The second group of studies in this area was motivated by a previous hypersonic vehicle, namely, the NASP

(Rricketts et al., 1993; Spain et al., 1993a, b; Scott and Pototzky, 1993; Rodgers, 1992; Heeg et al., 1993; Heeg and

Gilbert, 1993). However, some of these studies dealt with the transonic regime, because it was perceived to be quite

important. Spain et al. (1993a) carried out a flutter analysis of all-movable NASP-like wings with slab and double-

wedge airfoils. They found that using effective shapes for the airfoils obtained by adding the boundary layer

displacement thickness to the airfoil thickness improved the overall agreement with experiments. Aerothermoelastic

analyses of NASP-like vehicles found that aerodynamic heating altered the aeroelastic stability of the vehicle through

the degradation of material properties and introduction of thermal stresses (Rodgers, 1992; Heeg et al., 1993; Heeg and

Gilbert, 1993).

The third group of studies is restricted to recent papers that deal with the newer hypersonic configurations such as the

X-33 or the X-34. Blades et al. (1999) considered the X-34 launch vehicle in free flight at MN ¼ 8:0: The aeroelastic

instability of a generic hypersonic vehicle, resembling the X-33, was considered in (Nydick and Friedmann, 1999) and

(Nydick, 2000). It was found that at high hypersonic speeds and high altitudes, the hypersonic vehicle is stable, when

first-order piston theory was used to represent the aerodynamic loads. Sensitivity of the flutter boundaries to vehicle

flexibility and trim state were also considered (Nydick and Friedmann, 1999). In another reference (Gupta et al., 2001),

CFD-based flutter analysis was used for the aeroelastic analysis of the X-43 configuration, using system identification-

based order reduction of the aerodynamic degrees of freedom. Both the structure and the fluid were discretized using
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Y 3� 1 matrix of Euler angles

yf angle of the X-33 fins, measured from horizontal

x streamwise local coordinate of equivalent plate trapezoidal segment

r vehicle density

t thickness ratio of the airfoil

f; y;c Euler angles, elements of Y
fx;fy;fz; fFz

fFy
vectors of power series terms for the approximating polynomials of ux0; uy0; uz0;Fx;Fy;

respectively

Fk kth normal mode

F modal matrix

Fx;Fy rotations due to transverse shear in the xz and yz planes, respectively

o angular velocity

ok natural frequency of kth normal mode
#ok nondimensionalized natural frequency

Special symbols

ð�Þ derivative with respect to time

ð Þ0 derivative with respect to spatial coordinate
#ð Þ indicates energy density of variable or nondimensionalized quantity, depending on context
*ð Þ skew symmetric matrix
%ð Þ trimmed value

ð Þlb quantity with respect to the lifting body only

ð Þf quantity with respect to the canted fins only

ð Þe quantity with respect to the elevon only

ð Þt quantity with respect to the total vehicle
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the finite element approach. It was shown that piston theory and ARMA Euler calculations predicted somewhat similar

results.

From the studies on various hypersonic vehicles (Ricketts et al., 1993; Berry et al., 1999; Riley and Alter, 1998; Gupta

et al., 2001) one can identify operating envelopes for each vehicle. A graphical representation of these operating

conditions is shown in Fig. 1.

In a recent study (Thuruthimattam et al., 2002), the two-dimensional aeroelastic stability problem of a double-wedge

typical section in hypersonic flow has been studied. Three different unsteady types of aerodynamic loads were used in an

attempt to establish the differences in stability boundaries when using: (a) piston theory; (b) computational fluid

dynamics (CFD)-based Euler loads; and (c) loads based on the CFD solution of the Navier–Stokes equations. This

simple model has proved itself very useful for understanding the level of approximations needed when generating

unsteady aerodynamic loads. This paper has several objectives: (i) to present an aeroelastic analysis for a typical cross-

section of a double-wedge airfoil in hypersonic flow and use it to compare aeroelastic stability boundaries based on

unsteady aerodynamic loads obtained from piston theory, as well as loads based on CFD obtained from the Euler and

Navier–Stokes equations; (ii) to present the unrestrained aeroelastic equations of motion for a generic trimmed

hypersonic vehicle; and (iii) to conduct a parametric study of the aeroelastic behavior of a hypersonic vehicle in free

flight and determine its aeroelastic stability characteristics.

It is important to note that this is an exploratory paper that aims to identify the value of approximate aeroelastic

models in the hypersonic flow region where only a limited amount of research has been done to date.

2. Aeroelastic analysis of the double-wedge typical section in hypersonic flow

The computational aeroelastic solutions for the double-wedge typical section are obtained using the CFL3D code

(Krist and Rumsey, 1997). The CFL3D code is used to perform both steady and unsteady flow calculations, and to also

obtain the aeroelastic transients. The aeroelastic solution utilizes the free vibration modes of the structure.

2.1. Euler/Navier–Stokes solver in CFL3D

The aeroelastic analysis of the double-wedge airfoil is carried out using the CFL3D code. The code uses an implicit,

finite-volume algorithm based on upwind-biased spatial differencing to solve the time-dependent Euler- and Reynolds-

averaged Navier–Stokes equations. Multigrid and mesh sequencing are available for convergence acceleration. The

algorithm, which is based on a cell-centered scheme, uses upwind differencing based on either flux-vector splitting or

flux-difference splitting, and can sharply capture shock waves. For applications utilizing the thin-layer Navier–Stokes

equations, different turbulence models are available. For time-accurate problems using a deforming mesh, an additional

term accounting for the change in cell volume is included in the time discretization of the governing equations. Since
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Fig. 1. Operating envelopes for several modern hypersonic vehicles.
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CFL3D is an implicit code using approximate factorization, linearization and factorization errors are introduced at

every time step. Hence, intermediate calculations referred to as ‘‘subiterations’’ are used to reduce these errors.

Increasing these subiterations improves the accuracy of the simulation, albeit at increased computational cost.

2.2. Aeroelastic option in CFL3D

The aeroelastic approach underlying the CFL3D code is similar to that described in Robinson and Yang (1991) and

Cunningham and Bennett (1989). The equations are derived by assuming that the general motion wðx; y; tÞ of the

structure is described by a finite modal series given by Eq. (1) below. The functions fiðx; yÞ represent the free vibration
modes of the vehicle which are calculated using a finite element approach

uðx; y; tÞ ¼
XNm

i¼1

qiðtÞUiðx; yÞ: ð1Þ

The aeroelastic equations of motion are obtained from Lagrange’s equations

d

dt

@T

@’q

� �
	

@T

@q
þ
@U

@q
¼ Q; ð2Þ

which yield

Mgq̈ þ Kq ¼ Qðq; ’q; .qÞ; ð3Þ

where the elements of the generalized force vector are given by

Qi ¼ qNc2
Z

A

Ui
psdA

qNc2
: ð4Þ

The aeroelastic equations are written in terms of a linear state-space equation (using a state vector of the form

½y ’qi	1 qi ’qi qiþ1 y�T) such that a modified state-transition-matrix integrator can be used to march the coupled fluid–

structural system forward in time. The fluid forces are coupled with the structural equations of motion through the

generalized aerodynamic forces. Thus, a time history of the modal displacements, modal velocities and generalized

forces is obtained.

2.3. General overview of the solution process

The solution of the computational aeroelasticity problem used in the present study is shown in Fig. 2. First, the

vehicle geometry is created using CAD software, and from this geometry a mesh generator is used to create a structured

mesh for the flow domain around the body. In parallel, an unstructured mesh is created for the finite element model of

the structure using the same nodes on the vehicle surface that were used to generate the fluid mesh. Subsequently, the

fluid mesh is used to compute the flow around the rigid body using a CFD solver, which consists of the CFL3D code

developed by NASA Langley Research Center. The structural mesh is used to obtain the free vibration modes of the

structure by finite element analysis using MSC NASTRAN. Nodes on the surface of the geometry in both the

structured and unstructured meshes are matched up by their physical coordinates. This correlation is used to obtain

the modal displacements at each of the surface nodes in the structured fluid mesh from the unstructured structural

mesh. Using the flow solution as an initial condition, and the modal information, an aeroelastic steady state is obtained.

For a geometry with vertical symmetry at zero angle of attack, such as the double-wedge airfoil, the aeroelastic steady

state is the same as the undeflected state. Next, the structure is perturbed in one or more of its modes by an initial modal

velocity condition, and the transient response of the structure is obtained. To determine the flutter conditions at a given

altitude, aeroelastic transients are computed at several Mach numbers and the corresponding dynamic pressures. The

frequency and damping characteristics of the transient response for a given flight condition and vehicle configuration

can be determined from the moving block approach, which analyzes the Fourier transform of a discretely sampled

transient signal (Bousman and Winkler, 1981). This approach applied to the same altitude and vehicle configuration for

a range of Mach numbers results in a series of damping values for the system. The flutter Mach number can be

estimated from this series by interpolating the damping data-points to identify zero damping.

2.4. Computational model for the double-wedge airfoil

The Euler and Navier–Stokes computations are carried out using a 225� 65 C-grid with 225 points around the wing

and its wake (145 points wrapped around the airfoil itself), and 65 points extending radially outward from the airfoil
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surface. The computational domain extends one chord-length upstream and six chord lengths downstream, and one

chord length to the upper and lower boundaries. For the Navier–Stokes simulations, the Spalart–Allmaras turbulence

model was used, along with an adiabatic wall temperature condition. The double-wedge airfoil and a portion of the

surrounding computational grid are shown in Fig. 3.

2.5. Aeroelastic model for a double-wedge airfoil using higher-order piston theory

Piston theory is an inviscid unsteady aerodynamic theory that has been used extensively in supersonic and hypersonic

aeroelasticity. It provides a point–function relationship between the local pressure on the surface of the vehicle and the

component of fluid velocity normal to the moving surface (Ashley and Zartarian, 1956; Lighthill, 1953). The derivation

utilizes the isentropic ‘‘simple wave’’ expression for the pressure on the surface of a moving piston

psðx; tÞ
pN

¼ 1þ
g	 1

2

vp

aN

� �2g=ðg	1Þ

; ð5Þ

where

vp ¼
@Z0ðx; tÞ

@t
þ UN

@Z0ðx; tÞ
@x

: ð6Þ

The expression for piston theory is based on a binomial expansion of Eq. (5), where the order of the expansion is

determined by the ratio of vp=aN: Lighthill (1953) suggested a third-order expansion, since it produced the smallest
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error of the various orders of expansion used when compared to the limiting values of pressure, namely, the ‘‘simple

wave’’ and ‘‘shock expansion’’ solutions. The third-order expansion of Eq. (5) yields

psðx; tÞ 	 pN ¼ pN g
vp

aN
þ

gðgþ 1Þ
4

vp

aN

� �2

þ
gðgþ 1Þ

12

vp

aN

� �3
" #

: ð7Þ

An aeroelastic analysis for a typical cross-section for a double-wedge airfoil was developed using Eq. (7) for the

unsteady pressure loading. The equations of motion for a typical cross-section, with pitch and plunge degrees of

freedom shown in Fig. 4, were obtained from Lagrange’s equations

mḧ þ Sa .aþ Khh ¼ 	L0ðtÞ;

Saḧ þ Ia .aþ Kaa ¼ MEAðtÞ: ð8Þ

Assuming small displacements and using Fig. 4 yields

Z0ðx; tÞ ¼ 	fhðtÞ þ ðx 	 baÞaðtÞg þ f ðxÞ ð9Þ
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and

vpu ¼ 	f ’h þ ðx 	 baÞ’ag þ UN 	aþ
@f ðxÞ
@x

� �
;

vpl ¼ f ’h þ ðx 	 baÞ’ag 	 UN 	aþ
@f ðxÞ
@x

� �
; ð10Þ

where

@fuðxÞ
@x

¼ t: 	 boxo0;

@fuðxÞ
@x

¼ 	t: 0oxob;

@flðxÞ
@x

¼ 	t: 	 boxo0;

@flðxÞ
@x

¼ t: 0oxob: ð11Þ

From Eqs. (7), (10) and (11) the unsteady pressure distribution was determined. The unsteady lift and moment due to

this pressure distribution were determined from

L0ðtÞ ¼
Z b

	b

ðplðx; tÞ 	 puðx; tÞÞ dx;

MEAðtÞ ¼ 	
Z b

	b

ðx 	 baÞ ðplðx; tÞ 	 puðx; tÞÞ dx: ð12Þ

The unsteady lift can be written as

L0ðtÞ ¼ L0
1ðtÞ þ L0

2ðtÞ þ L0
3ðtÞ; ð13Þ

where

L0
1ðtÞ ¼ 4pNgMNb

’h

V
	 ba

’a
V

þ a
� �

;

L0
2ðtÞ ¼ 	pNgðgþ 1ÞM2

N
b2t

’a
V

� �
;

L0
3ðtÞ ¼

1

3
pNgðgþ 1ÞM3

N
b

’h

V
	 ba

’a
V

þ a
� �

’h

V
	 ba

’a
V

þ a
� �2

þ3t2 þ b
’a
V

� �2
 !( )

: ð14Þ

Note that L1ðtÞ; L2ðtÞ; and L3ðtÞ represent the first-, second- and third-order piston theory lift components, respectively.

The unsteady moment is represented in a similar manner

MEAðtÞ ¼ M1ðtÞ þ M2ðtÞ þ M3ðtÞ; ð15Þ

where

M1ðtÞ ¼ 4pNgMNb2 a
’h

V
	

b

3
þ ba2

� �
’a
V

þ aa
� �

;

M2ðtÞ ¼ pNgðgþ 1ÞM2
N

b2t
’h

V
	 2ba

’a
V

þ a
� �

;

M3ðtÞ ¼ 	
1

3
pNgðgþ 1ÞM3

N
b2

1

5
b
’a
V

� �3

	a
’h

V
	 ba

’a
V

þ a
� �

’h

V
	 ba

’a
V

þ a
� �2

þ3t2
 !(

þ b
’a
V

’h

V
	 ba

’a
V

þ a
� �2

þt2 	 ba
’a
V

’h

V
	 ba

’a
V

þ a
� � !)

: ð16Þ
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It is interesting to note that the second-order lift and moment are linear in terms of the displacement variables due to

vertical symmetry of the double-wedge airfoil.

For compatibility with CFL3D, it is important to represent Eq. (8) in terms of generalized coordinates and forces.

This is accomplished by the normal mode transformation given by

hðtÞ

aðtÞ

� �
¼ ½U�

q1ðtÞ

q2ðtÞ

� �
: ð17Þ

Applying the normal mode transformation on the equations of motion, Eq. (8), yields

q̈1ðtÞ

q̈2ðtÞ

� �
¼ ½U�T

LðtÞ

MEAðtÞ

� �
	

o2
1 0

0 o2
2

" #
q1ðtÞ

q2ðtÞ

� �
; ð18Þ

for mass normalized modes. The modal degrees of freedom are coupled through the generalized aerodynamic loads.

Eq. (18) was solved using the subroutine ODE45 in MATLABr:

2.6. Results on the aeroelastic stability of the double-wedge typical section

The results presented in this section compare aeroelastic stability boundaries using piston theory with those based on

CFD solutions of the Euler and Navier–Stokes equations. By comparing these three sets of results, one can identify the

importance of viscosity and the effectiveness of piston theory in approximating the aeroelastic behavior of a double-

wedge typical section in inviscid flow.

The configuration is based on the parameters given in Table 1, the material of the structure is assumed to be

aluminum alloy 2024-T3. Fig. 5 depicts the flutter boundaries at various altitudes, as a function of the offset a; for the
operating envelope of a typical hypersonic vehicle, at 0� angle of attack, based on first- and third-order piston theory.

The mass ratios for the various altitudes, calculated using the standard-atmosphere, are given in Table 2. It is quite

interesting to compare the flutter boundaries obtained with first- and third-order piston theory at altitudes of 40 000 ft

and 70 000 ft: For both cases, for the high Mach number regime, there are large differences between the flutter margins

predicted by the linear and nonlinear versions of piston theory. There is a large reduction in aeroelastic stability when

going from first- to third-order piston theory, particularly in the high Mach number regime. This difference diminishes

as the Mach number regime decreases. It is evident that for positive values of the offset a; the first-order curves tend to

asymptotically approach the curves based on third-order piston theory. For the Mach number range of foMNo15;
the height selected for the flutter calculations of this configuration was 70 000 ft: At this altitude, the flutter boundaries

are at Mc ¼ 9:21 for a ¼ 0:1 and at Mc ¼ 14:96 for a ¼ 	0:2: Sample computational points from this study were Mach

numbers 7, 10 and 15 at 70 000 ft; with Reynolds numbers of 3:336� 106; 4:766� 106 and 7:149� 106; respectively.
The results for the aeroelastic behavior with a ¼ 0:1 using different aerodynamic models is shown in Fig. 6. The linear

nature of the second-order piston theory model allowed an eigenanalysis for comparison with frequency and damping

characteristics from second-order piston theory aeroelastic transients. From this figure, the flutter Mach number

predicted by second-order piston theory was Mc ¼ 9:79: In general, results from the time history analysis agreed with

the eigenanalysis. The sharp coalesce shown in Fig. 6 is due to an inability of the moving block approach to distinguish

between the damping and frequency characteristics of the transient motion as the flutter Mach number is approached

and the two modes begin to interact. The flutter Mach number obtained with Euler aerodynamics is Mc ¼ 6:75; and
when Navier–Stokes aerodynamics is used, flutter is found to be at Mc ¼ 6:59:
For a different offset between midchord and elastic axis, a ¼ 	0:2; Fig. 7 indicates that differences in system response

from the three aerodynamic models are minor at Mach numbers well below the flutter boundaries. However, these

differences increase with Mach number. An eigenanalysis using second-order piston theory indicates flutter at Mc ¼
15:16; while an analysis of third-order piston theory aeroelastic transients indicates flutter at Mc ¼ 14:96: It is apparent
that, for this configuration, third-order piston theory is slightly more conservative than second-order piston theory.

With Euler aerodynamics, the flutter boundary drops to Mc ¼ 11:76; and using Navier–Stokes aerodynamics results in

a further reduction to Mc ¼ 11:15: These differences emphasize the importance of aerodynamic nonlinearities and

viscosity with increasing Mach numbers.

All the cases considered were at 0� static angle of attack. Hypersonic vehicles in trimmed flight will operate at an

angle of attack. The effect of static angle of attack with a ¼ 	0:2 is shown in Fig. 8, using Euler aerodynamics. Three

static angles of attack as ¼ 0�; as ¼ 1� and as ¼ 2� were considered. Increasing the static angle of attack reduces the

flutter margin proportionally by a small value. Results with piston theory and Navier–Stokes aerodynamics, not shown

here, exhibit similar trends.
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The results shown in this section, together with additional results shown in (Thuruthimattam et al., 2002) indicate

that trend-type studies based on piston theory produce reasonable trends. The computational requirements for Euler

equations are quite substantial, while Navier–Stokes solutions are very expensive. Thus when dealing with a complete

hypersonic vehicle, the use of the simple piston theory, for a trend type study, can be justified based on computational

cost. The problem of a complete hypersonic vehicle in trimmed flight is considered in the next section.

3. Aeroelastic analysis of a trimmed generic hypersonic vehicle

An aeroelastic analysis of the entire vehicle in free flight in the hypersonic regime requires the formulation of the

governing equations of motion for an unrestrained flexible vehicle. A general discussion of the governing equations of
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Table 2

Mass ratio at various altitudes

Altitude (ft) mm; Configuration I

0 13.47

5000 15.63

40 000 141.81

70 000 232.68

100 000 942.60

Table 1

Properties of the configuration

Parameter Configuration I

c (m) 2.00

Thickness ratio (%) 2.5

Wedge angle (deg) 2.86

m (kg/m) 51.8

ra 0.5

oh (Hz) 7.96

oa (Hz) 19.9
oh
oa

0.4

xa 0.2
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motion for unrestrained flight vehicles can be found in the text by Bisplinghoff et al. (1955) and the series of papers by

Milne (1955, 1968). Application to hypersonic vehicles has been studied by Waszak and Schmidt (1988) and Bilimoria

and Schmidt (1995) where the primary emphasis has been on stability and control. A novel approach to the

determination of the governing equations of motion of a flexible body using quasi-coordinates has been presented by

Meirovitch (1991). The method of quasi-coordinates is an effective and labor-saving procedure for obtaining the

governing equations for flexible structures involving rigid body and flexible degrees of freedom.

When representing the dynamics of a flexible aerospace vehicle, several alternatives exist. One can develop a finite

element model for a vehicle, which usually involves a large number of degrees of freedom. The finite element degrees of

freedom can be reduced by calculating a limited number of free vibration modes and using a normal mode

transformation. An alternative to the finite element method is the equivalent plate theory, which produces significant

savings in both computational time and model setup effort while retaining acceptable modelling accuracy (Giles, 1986).

Recently, equivalent plate theory has received renewed attention and its modelling capabilities have been expanded so

that it is now capable of representing complex aerospace vehicle structural configurations (Giles, 1989, 1995; Livne,

1993). Such enhancements include the ability to model asymmetric fin cross-sections, out-of-plane fin segments, internal

web and spar structures, including transverse shear effects, thermal stresses and general boundary conditions, as well as

the ability to specify multiple trapezoidal segments and multiple sets of assumed displacement functions. In this study,

equivalent plate theory is employed to calculate the free vibration modes of the unrestrained vehicle using the ELAPS

code.

3.1. Equations of motion of the unrestrained vehicle

The derivation of the equations of motion for the unrestrained generic hypersonic vehicle is based upon Lagrange’s

equations of motion in terms of quasi-coordinates following the approach described in Meirovitch (1991).

Quasi-coordinates are defined in terms of their time derivatives. Specifically, these time derivatives are defined as

nonintegrable linear combinations of the generalized velocities. Because the time derivatives are nonintegrable, the

quasi-coordinate itself is undefined.
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The coordinate systems needed to describe the translating and rotating elastic body are shown in Figs. 9 and 10. The

body axes translate and rotate with the body, though they are not necessarily attached to a specific material point in the

body. Possible choices for the body axes include attached axes, mean axes and principal axes (Milne, 1955). Attached

axes are attached to a specific material point in the body, mean axes are oriented such that no linear or angular

momentum is generated by the flexible motion, and principal axes are oriented such that they are the principal axes of

the deforming body at all times. Mean axes are used in this study.

As shown in Meirovitch (1991) and Nydick and Friedmann (1999), after considerable algebraic manipulation,

Lagrange’s equations may be rewritten in terms of time

d

dt

@ %L

@V0

� �
þ *x

@ %L

@V0
	 C

@ %L

@RI
0

¼ F; ð19aÞ

d

dt

@ %L

@o

� �
þ *V0

@ %L

@V0
þ *x

@ %L

@x
	 ðDTÞ	1 @ %L

@H
¼ M; ð19bÞ

d

dt

@T̂

@v

� �
	
@T̂

@u
þ

@V̂�

@u
þLu ¼ #F; ð19cÞ

where F and M are nonconservative force and torque vectors, respectively, written in terms of components along the

body axes and the displacements u are subject to appropriate boundary conditions. The bar above the Lagrangian

indicates that it is to be expressed in terms of time derivatives of quasi-coordinates.

The equations for a translating and rotating flexible body may be completed by substituting appropriate expressions

for the Lagrangian. Using the geometry given in Fig. 9, the position and velocity of material point P can be written as

rp ¼ R0 þ rþ u; ð20aÞ

vp ¼ ’R0 þ x � ðrþ uÞ þ v; ð20bÞ

and expressions for the kinetic and potential energy may be obtained. When small deformations are assumed, the

displacements are expressed as a sum of unrestrained normal modes

uðr; tÞ ¼
XNm

k¼1

UkðrÞZkðtÞ ¼ Ug; ð21Þ
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where the modes satisfy the orthogonality relations given byZ
V

Ui � Ujr dV ¼ M
g
i dij ; ð22Þ

where M
g
i is the ith generalized mass. This orthogonality property holds for both the rigid body and flexible modes.

Simplification of the kinetic energy expression can be obtained by employing mean axes with the origin at the center

of gravity of the deformed vehicle as the body axes. Mean axes reduce the inertial coupling between the rigid and

flexible equations of motion. Mean axes are chosen such that, at every instant, the linear and angular momenta of the

relative motion with respect to the body axes are identically zero, which leads to the relations (Milne, 1955)Z
V

ru dV ¼ 0; ð23Þ

Z
V

rr� u dV ¼ 0: ð24Þ

For mean axes, the kinetic energy expression becomes

T ¼
1

2
mVT

0 J
0x þ

1

2

Z
D

r½2rT *xT *xUg þ gTUT *xT *x Ug� dD þ
1

2
’gTMg ’g: ð25Þ

The potential energy is written

U ¼ 1
2
gTKgg ð26Þ

and

Vg ¼ 	mgRI
0Z : ð27Þ

The final equations of motion of the unrestrained vehicle can be written as (Nydick and Friedmann, 1999; Nydick,

2000)

m ’V0 ¼ m *V0x 	 C
@Vg

@RI
0

þ F; ð28aÞ

J0 ’x ¼ 	 *xJ0x þM; ð28bÞ

Mg .g þ Cg ’g þ Kg 	
Z

D

rUT *xT *xU dD

� �
g ¼

Z
D

rrT *xT *xU dD þ #Q: ð28cÞ

This study focuses on the longitudinal dynamics of a symmetric vehicle in horizontal flight, which can be decoupled

from the lateral equations and written as

mð ’V0x þ qV0zÞ ¼ X 	 mg sin y; ð29aÞ

mð ’V0z 	 qV0xÞ ¼ Z þ mg cos y; ð29bÞ

j0yy ’q ¼ M: ð29cÞ

The equation governing the elastic motion remains unchanged.

3.2. Trim state of the vehicle

Aeroelastic stability boundaries are obtained from dynamic equations linearized about a static trim state; the

geometry for trim is shown in Figs. 10 and 11. Lateral trim is assumed to be satisfied and decoupled from the

longitudinal trim state. Longitudinal trim is obtained for level, ascending or descending flight by using elevons located

at the trailing edge of the lifting body, as shown in Fig. 11(a). The trim state of the vehicle involves three primary

quantities: %a; %de; and T : These quantities are depicted in Fig. 11(a), which shows the hypersonic vehicle in climb at an

angle, %gc; which is equal to the Euler angle, y:
Four sets of axes are used to describe the vehicle. The first set is an inertial axis system, XI ;YI ;ZI ; attached to a flat

earth. The second set is a stability axis system, Xs;Ys;Zs; located at the vehicle center of gravity (c.g.) and initially

aligned with the equilibrium flight velocity, %V0: It is obtained from the inertial axes by locating them at the vehicle

center of mass and rotating about YI by the angle, %gc þ Dy; where Dy ¼ 0 in the trim state. The third is a body axis

system, xb; yb; zb; obtained by rotating the stability axes about ys by the trim angle of attack, %a; which aligns the xb axis
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with the zero lift line (ZLL). The fourth system is the xbi; ybi; zbi body axis (shown in Fig. 12), obtained from the

xb; yb; zb system by shifting the axes origin to the junction of the right fin trailing edge and the main lifting body and

rotating about xb by the fin inclination angle, yf ; which directs the ybi-axis outward along the right fin. This additional

system is needed to represent the aerodynamic loads on the canted fin surfaces.

The net aerodynamic force acting on the vehicle is given by the lift, %L; and the drag, %D; also shown in Fig. 11(a).

Alternatively, the net aerodynamic force may be resolved into components, %N; normal to the zero lift line and, %A;
parallel to the zero lift line; or components, %Za and %XA; directed along the stability axes, zs and xs; respectively. Because
the xs-axis is initially oriented in the direction of V0; %Za

s equals the trim lift, %L; and %Xa
s equals the trim drag, %D:However,

if the vehicle is perturbed from the trim state the forces %Za
s and %Xa

s will differ from L and D; respectively.
In order to account for the effect of thrust on the trim state, a general case is considered where the thrust has an

eccentricity, eT ; and can be inclined by an angle, eT ; relative to the vehicle zero lift line. Enforcing force and moment

equilibrium conditions in the vertical plane, with respect to the stability axes, yields the trim equations in

nondimensional form.

C %TR
cos ðeT þ %aÞ 	 C %DR

¼ CW sin %gc; ð30aÞ

C %TR
sinðeT þ %aÞ þ C %LR

¼ CW cos %gc; ð30bÞ

C %MR
þ C %TR

eT ¼ 0; ð30cÞ

where

C %LR
¼

%LR

1
2
r
N

%V2
0xAt

; C %DR
¼

%DR

1
2
r
N

%V2
0xAt

; C %MR
¼

%Ma
R

1
2
r
N

%V2
0xAtllb

;

C %TR
¼

%TR

1
2
r
N

%V2
0xAt

; CW ¼
mg

1
2
r
N

%V2
0xAt

:
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For trim purposes, only the aerodynamic loads are steady (static) and are evaluated by treating the vehicle as a rigid

plate-like structure. The aerodynamic loads are approximated using modified Newtonian theory (Lees, 1955), which

states that the pressure coefficient is given by (Rasmussen, 1994)

Cp ¼
Cpmax

%V0 � n̂

%VN

� �2

; %V0 � #no0;

0; %V0 � #nX0;

8><
>: ð31Þ

where Cpmax is the maximum value of the pressure coefficient, evaluated at a stagnation point behind a normal shock

wave, i.e.,

Cpmax ¼
2

gM2
N

gþ 1

2
M2

N

� �g=ðg	1Þ gþ 1

2gM2
N

	 gþ 1

� �1=ðg	1Þ

	1

" #
: ð32Þ
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Note from Eq. (31) that the pressure is assumed to be equal to the free-stream pressure on those parts of the body for

which %V0 � #nX0: These parts of the body are said to lie in the aerodynamic shadow.

The lift, drag and moment are obtained by integrating the pressure over the fuselage, canted fins, and elevon

separately, and summing each contribution. The resulting aerodynamic forces are given by

C %L ¼Cpmax sin2 %a cos %a
Alb

At

þ 2 sin2 %a cos %a cos3 yf

Af

At

�

þ sin2ð%aþ %deÞ cosð%aþ %deÞ
Ae

At

�
; ð33aÞ

C %D ¼ Cpmax sin3 %a
Alb

At

þ 2 sin3 %a cos3 yf

Af

At

þ sin3ð%aþ %deÞ
Ae

At

� �
; ð33bÞ

C %M ¼Cpmax
sin2 %a
Atllb

s1w3
lb

24
	

1

4
s1s2w2

lb þ
1

2
ðs22 	 d2

f 	 c2fr 	 2df cfrÞwlb

� ��

	 sin2 %a cos3 yf

2ðdf þ cfr þ cftÞ
llb

Af

At

	
1

Atllb

�

�
1

3
ðs24 	 s23Þs

3
f þ s4m2s2f þ m2

2sf

� ��
	 sin2ð%aþ %deÞ cosð%aþ %deÞ

de

llb

Ae

At

�
; ð33cÞ

where

s1 ¼
2ðllb 	 cfrÞ

wlb

; s2 ¼ llb 	 cfr 	 df ; s3 ¼
cft

sf

; s4 ¼
cfr

sf

:

The trim state is calculated by solving Eqs. (30) with the aerodynamic loads given by Eqs. (33) using a nonlinear

rootfinding routine.

3.3. Linearization of equations of motion

The equations of motion (Eqs. (29)) can be linearized about the steady-state trim conditions by introducing a small

time-dependent perturbation, denoted by the symbol D in the various quantities representing forces, moments, as well

as rigid body and flexible degrees of freedom.

Since the vehicle was trimmed by referencing forces and moments to the stability axes, the subscript ‘s’ has been

added to these terms to indicate that they are to be interpreted as components taken along the stability axes. The

various vehicle axes which were previously discussed are shown for the vehicle in perturbed flight in Fig. 11(b). Also,

because a linear structural model is used for the vehicle, coupling between the steady-state deflections due to the trim

forces, Zk; and the perturbed motion variables is neglected. The linear structural model is justified because generic

hypersonic vehicles can be assumed to be relatively stiff, and therefore will have only small deflections due to elastic

deformations.

Substitution of the expressions for the perturbed motion variables into the nonlinear longitudinal equations of

motion, and subsequent elimination of all higher-order terms, results in the linearized equations

mD’v0x ¼ 	mg cos %yDyþ DXs; ð34aÞ

mD’v0z ¼ m %V0xDq 	 mg sin %yDyþ DZs; ð34bÞ

J0
yyD ’q ¼ DMs; ð34cÞ

D’y ¼ Dq; ð34dÞ

D.Zk þ 2xkokD’Zk þ o2
kDZk ¼

DQ̂k

M
g
k

; k ¼ 1;y;Nm: ð34eÞ

Further simplification of the linearized equations is obtained by recognizing that coupling between the rigid body and

elastic degrees of freedom will only involve the short period mode. Coupling is assumed to be negligible between the

long period (phugoid) mode and the elastic degrees of freedom due to the large separation in the natural frequencies.

Furthermore, the perturbation in forward speed, Dv0x; has a negligible effect on the short period mode, for typical flight

vehicles. Thus, Dv0x ¼ 0 and the equation governing Dv0x is discarded. The rigid body equations of motion after this
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simplification are

mD’v0z ¼ m %V0xDq þ DZs; ð35aÞ

J0
yyD ’q ¼ DMs: ð35bÞ

The force and moment perturbations, DZs and DMs; are expressed in terms of partial derivatives with respect to the

degrees of freedom. Eqs. (34e), (35a) and (35b) can be rewritten in terms of nondimensional flutter derivatives

m̂Dt̂Da ¼ CzaDaþ ðm̂ þ CzqÞDq̂ þ
XNm

i¼1

fCzZiD#Zi þ Cz’ZiD#ZNmþi
g þ CzdeDde; ð36aÞ

Ĵ0yyDt̂q̂ ¼ CmaDaþ CmqDq̂ þ
XNm

i¼1

fCmZiD#Zi þ Cm’ZiD#ZNmþi
g þ Cmdede; ð36bÞ

M̂
g
kDt̂ #ZNmþk

¼CQkaDaþ CQk
qDq̂ þ

XNm

i¼1

fðCQkZl 	 #o2
kM̂

g
kdklÞD#Zl

þ ðCQk ’Zl 	 2xk #okM̂
g
kdklÞD#ZNmþl

g þ CQkdeDde; ð36cÞ

Dt̂D#Zk ¼ D#ZNmþk
; k ¼ 1;y;Nm; ð36dÞ

where the various nondimensional quantities and the definitions of the flutter derivative are given in Appendix A.

Additional details are also given in (Nydick and Friedmann, 1999) and (Nydick, 2000).

3.4. Calculation of the flutter derivatives

The results provided in Section 2 indicate that the general trends of aeroelastic behavior predicted when using

unsteady airloads based on piston theory and the more accurate Euler equations are similar. Furthermore, often the

differences between Euler-based solutions and those based on the complete Navier–Stokes equations are also fairly

small. Therefore, when dealing with the aeroelastic stability of a hypersonic vehicle in high speed flight, it is reasonable

to use piston theory to generate the unsteady loads when only general trends, and not the exact stability boundary, is

sought. The primary advantage of this approach is the very large reduction in computational time required for the

analysis of the vehicle. The purpose of this section is to obtain flutter derivatives that are suitable for a linear aeroelastic

analysis and therefore linear piston theory is used for the derivation of the flutter derivatives.

The local pressure on the surface of the vehicle due to combined rigid body motion and structural deformation is

ps ¼ r
N

aNvp þ pN; ð37Þ

where vp is the velocity of a fluid particle on the surface of the vehicle in the direction normal to the surface.

The vehicle considered here has three principal types of lifting surfaces: a clipped delta-shaped lifting body, two

canted fins and an elevon (see Fig. 12). The flutter derivatives of the entire vehicle are obtained by combining the

individual contributions. The velocities of fluid particles on the upper and lower surfaces of the clipped delta-shaped

lifting body are given by (assuming V0xbV0z)

vu
pðxbÞ ¼ V0x cos %a

@uz

@xb

þ
@ %Zu

@xb

� �
	 ’uz þ xbq 	 V0z cos %a; ð38aÞ

vl
pðxbÞ ¼ 	V0x cos %a

@uz

@xb

þ
@ %Zl

@xb

� �
þ ’uz 	 xbq þ V0z cos %a: ð38bÞ

The net pressure is the sum of the trimmed pressure and the change in pressure due to the small perturbations in the

rigid body and flexible degrees of freedom. This change in pressure is given by

Dps ¼ r
N

aNDvp; ð39Þ

where Dvp is the portion of vp due to the perturbed motion

Dvu
pðxÞ ¼ %V0x cos %a

@Duz

@x
	 D ’uz þ xDq 	 cos %aDv0z; ð40aÞ

Dv1pðxÞ ¼ 	 %V0x cos %a
@uz

@x
þ D ’uz 	 xDq þ cos %aDv0z: ð40bÞ
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Combining Eqs. (39) and (40) gives the net pressure difference between the upper and lower surfaces due to the

perturbed motion

Dpu
s 	 Dpl

s ¼ 2r
N

aN
%V0x cos %a

@Duz

@x
	 D ’uz þ xDq 	 cos %aDv0z

� �
: ð41Þ

The aerodynamic force in the zb-direction on the main lifting body may be written as

DZlb;b ¼
Z

Alb

ðDpu
s 	 Dpl

sÞ dAlb

¼ 2r
N

aN %V0z cos %a
XNm

i¼1

Z
Alb

@Fz
i

@xb

dAlbDZi

 !

	 2r
N

aN
XNm

i¼1

Z
Alb

Fz
i dAlbD’Zi

 !

þ 2r
N

aN

Z
Alb

xb dAlbDq 	 2r
N

aNAlb cos %aDv0z: ð42Þ

The force component along the zs-axis is given by

DZlb ¼DZlb;b cos %a

¼
XNm

i¼1

ZlbZi
DZi þ

XNm

i¼1

Zlb’Zi
D’Zi þ ZlbqDq þ Zlbv0z

Dv0z: ð43Þ

The contributions of the lifting body to the Z flutter derivatives are

ZlbZi
¼ 2r

N
aN %V0x cos

2
%a
Z

Alb

@Fz
i

@x
dAlb; ð44aÞ

Zlb’Zi
¼ 	2r

N
aN cos %a

Z
Alb

Fz
i dAlb; ð44bÞ

Zlbq ¼ 2r
N

aN cos %a
Z

Alb

x dAlb; ð44cÞ

Zlbv0z
¼ 	2r

N
aNAlb cos

2
%a: ð44dÞ

The contribution of the main lifting body to the pitching moment flutter derivatives may be evaluated in a similar

manner. Using Eqs. (21) and (41), the pitching moment contributed by the clipped delta-shaped lifting body may be

expressed as

DMlb ¼ 	
Z

Alb

ðDpu
s 	 Dpl

sÞxb dAlb: ð45Þ

Substitution of Eqs. (21) and (41) into Eq. (45) yields the contributions of the lifting body to the pitching moment flutter

derivatives

MlbZi
¼ 	2r

N
aN

%V0x cos %a
Z

Alb

@Fz
i

@xb

xb dAlb; ð46aÞ

Mlb’Zi
¼ 2r

N
aN

Z
Alb

Fz
i xb dAlb; ð46bÞ

Mlbq ¼ 	2r
N

aN

Z
Alb

x2
b dAlb; ð46cÞ

Mlbv0z
¼ 2r

N
aN cos %a

Z
Alb

xb dAlb: ð46dÞ

The final set of flutter derivatives to be calculated are those associated with the generalized forces, Q̂i: These forces are
determined by examining the expression for the virtual work done by a virtual elastic displacement over an arbitrary
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surface area, A

dW ¼
Z

A

ðDpu
s 	 Dpl

sÞduz dA ¼
Z

A

ðDpu
s 	 Dpl

sÞ
XNm

i¼1

Fz
i dZi

 !
dA

¼
XNm

i¼1

Q̂idZi: ð47Þ

From Eq. (47), with A ¼ A1b; the contribution of the main lifting body to Q̂i is

Q̂lb
i ¼

Z
Alb

ðDpu
s 	 Dpl

sÞF
z
i dAlb: ð48Þ

Substituting Eq. (41) into Eq. (48) and expanding yields the contributions of the lifting body to the elastic generalized

force derivatives

Q̂lb
iZj

¼ 2r
N

aN %V0x cos %a
Z

Alb

Fz
i

@Fz
j

@xb

dAlb; ð49aÞ

Q̂lb
i’Zj

¼ 	2r
N

aN

Z
Alb

Fz
j f

z
j dAlb; ð49bÞ

Zlbq ¼ 2r
N

aN cos %a
Z

Alb

x dAlb; ð49cÞ

Zlbv0z
¼ 	2r

N
aNAlb cos

2
%a: ð49dÞ

The contribution of the canted fins to the flutter derivatives is obtained in a similar manner. The velocities of fluid

particles on the upper and lower surfaces of the fin due to the perturbed motion are given by

Dvu
pðxÞ ¼ %V0x cos %a

@uz0

@x0 	 ’uz0 þ xDq cos yf 	 Dv0z cos %a cos yf ; ð50aÞ

Dv1pðxÞ ¼ 	 %V0x cos %a
@uz0

@x0 þ ’uz0 	 xDq cos yf þ Dv0z cos %a cos yf ; ð50bÞ

where an additional primed coordinate system for the fin has been introduced, as shown in Fig. 12. Substitution of

Eqs. (50) into Eq. (39) gives the net pressure difference between the upper and lower surfaces of the fin due to the

perturbed motion

Dpu
s 	 Dpl

s ¼ 2r
N

aN
%V0x cos %a

@uz0

@x0 	 ’uz0 þ xDq 	 cos yf 	 Dv0z cos %a cos yf

� �
: ð51Þ

The net aerodynamic force in the zs-direction on the two fins is given by

DZf ¼ 2 cos %a cos yf

Z
Af

ðDpu
s 	 Dpl

sÞ dAf ; ð52Þ

where the contributions from each fin can be summed because both the vehicle and the motion are symmetric.

Substituting Eq. (51) into Eq. (52) yields the contribution of the two canted fins to the Z flutter derivatives

DZw ¼ 4 cos yf rNaN %V0x

Z
Aw

XNm

i¼1

dAwZi 	 4 cos yf rNaN

Z
Aw

XNm

i¼1

fi dAw ’Zi

þ 4 cos2 yf rNaN

Z
Aw

x dAwdq 	 4 cos2 yf rNaNAwdv0z: ð53Þ

The contribution of the fins to the Z flutter derivatives are

zf Zi
¼ 4 cos yf cos

2
%arNaN %V0x

Z
Af

@fz0

i

@x0 dAf ; ð54aÞ

zf ’Zi
¼ 	4 cos yf cos %arNaN

Z
Af

fz0

i dAf ; ð54bÞ
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zfq ¼ 4 cos2 yf cos %arNaN

Z
Af

x dAf ; ð54cÞ

zfv0z
¼ 	4 cos2 yf cos

2
%arNaNAf : ð54dÞ

The contribution of the canted fins to the pitching moment is given by

DMf ¼ 	2 cos yf

Z
Af

xðDpu
s 	 Dpl

sÞ dAf : ð55Þ

Since Eq. (55) differs from Eq. (52) only by the factor cos %a outside the integral and the factor 	x inside the integral, the

Mf flutter derivatives may be obtained from the Zf flutter derivatives

Mf Zi
¼ 	4 cos yf cos %arNaN %V0x

Z
Af

x
@fz0

i

@x0 dAf ; ð56aÞ

Mf ’Zi
¼ 4 cos yf rNaN

Z
Af

xfz0

i dAf ; ð56bÞ

Mfq ¼ 	4 cos2 yf rNaN

Z
Af

x2 dAf ; ð56cÞ

Mfv0z
¼ 4 cos2 yf cos %a rNaN

Z
Af

x dAf : ð56dÞ

Using the principle of virtual work in a manner similar to Eq. (46), the contribution of the canted fins to Q̂i is given by

Q̂
f
i ¼ 2

Z
Af

ðDpu
s 	 Dpl

sÞF
z0

i dAf : ð57Þ

The Q̂
f
i flutter derivatives may be obtained from the Q̂lb

i flutter derivatives by referring the mode shapes to the primed

(fin) coordinate system and multiplying the derivatives with respect to q and v0z by cos yf

Q̂
f
iZj

¼ 4r
N

aN %V0x cos %a
Z

Af

Fz0

i

@Fz0

j

@x0 dAf ; ð58aÞ

Q̂
f
i ’Zj

¼ 	4r
N

aN

Z
Af

Fz0

i F
z0

j dAf ; ð58bÞ

Q̂
f
iq
¼ 4 cos yf rNaN

Z
Af

Fz0

i x dAf ; ð58cÞ

Q̂
f
iv0z

¼ 	4 cos yf rNaN cos %a
Z

Af

Fz0

i dAf : ð58dÞ

Using the same procedure with which the flutter derivatives of the lifting body and canted fins were calculated, the

contribution of the rigid elevon to the flutter derivatives is found to be

DZev0z
¼ 	2r

N
aN cos2ð%aþ %deÞ Ae; ð59aÞ

DZeDq
¼ 	2r

N
aN cosð%aþ %deÞcos %deAe; ð59bÞ

DMev0z
¼ 	2r

N
aN cosð%aþ %deÞcos %deAe; ð59cÞ

DMeDq
¼ 	2r

N
aN cos2 %ded2

e Ae: ð59dÞ

Note that since the elevon is assumed to be rigid, all of the flutter derivatives involving elastic deflection are zero. In

particular, the effect of the deformation of the main lifting body on the perturbation aerodynamic forces experienced by

the elevon is assumed to be negligible.

The overall flutter derivatives of the entire vehicle can be written as a combination of the individual components for

which the flutter derivatives have been evaluated in the preceding parts of this section. Using Eqs. (44), (46), (49), (54),
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(56), (58), (59) and nondimensionalizing the derivatives using Eqs. (A.2), the flutter derivatives for the entire vehicle are

given by

Cza ¼
4 cos2 %a

MN

Alb

At

� �
þ 2

Af

At

cos2 yf þ
Ae

At

� �
cos2ð%aþ %deÞ

cos %a

� �
; ð60aÞ

Czq ¼
4 cos %a

MNAtllb

Z
Alb

x dAlb þ 2 cos2 yf

Z
Af

x dAf 	 Aede cos de
cosð%aþ %deÞ

cos %a

 !
; ð60bÞ

CzZi
¼

4llb cos
2 %a

MNAt

Z
Alb

@fz
i

@x
dAlb þ 2 cos yf

Z
Af

@fz0

i

@x0 dAf

 !
; ð60cÞ

Cz’Zi
¼

4 cos %a
MNAt

Z
Alb

fz
i dAlb þ 2 cos yf

Z
Af

fz0

i dAf

 !
; ð60dÞ

Cma ¼
4 cos %a

MNAtllb

Z
Alb

x dAlb þ 2 cos2 yf

Z
Af

x dAf 	 Aede cos de
cosð%aþ %deÞ

cos %a

 !
; ð61aÞ

Cmq ¼ 	
4

MNAtl
2
lb

Z
Alb

x2 dAlb þ 2 cos2 yf

Z
Af

x2 dAf þ Aede cos
2 %de

 !
; ð61bÞ

CmZi
¼ 	

4 cos %a
MNAt

Z
Alb

@fz
i

@x
x dAlb þ 2 cos yf

Z
Af

@fz0

i

@x0 x dAf

 !
; ð61cÞ

Cm’Zi
¼

4

MNAtllb

Z
Alb

fz
i x dAlb þ 2 cos yf

Z
Af

fz
i x dAf

 !
; ð61dÞ

CQka ¼ 	
4 cos %a
MNAt

Z
Alb

fz
k dAlb þ 2 cos yf

Z
Af

fz0

k dAf

 !
; ð62aÞ

CQkq ¼
4

MNAtllb

Z
Alb

fz
k x dAlb þ 2 cos yf

Z
Af

fz0

k x dAf

 !
; ð62bÞ

CQkZl cos %a ¼
4llb

MNAt

Z
Alb

fz
k

@fz
l

@x
dAlb þ 2

Z
Af

fz0

k

@fz0

l

@x0 dAf

 !
; ð62cÞ

CQk ’Zl
¼ 	

4

MNAt

Z
Alb

fz
kf

z
l dAlb þ 2

Z
Af

fz0

k f
z0

l dAf

 !
: ð62dÞ

3.5. Structural dynamic model based on equivalent plate approach

The configuration selected for the generic hypersonic vehicle resembles the X-33 RLV, as shown in Fig. 13. The initial

structural model consists of isotropic equivalent plate segments and nonstructural masses for the canted fins, clipped

delta-shaped main lifting body, fuel and payload. The mass and stiffness properties of the equivalent plate model are

determined by matching the calculated mode shapes and frequencies to those obtained from a detailed NASTRAN

model of the empty vehicle. This simple configuration was chosen to facilitate methodology development.

The solution of the governing equations of motion for the unrestrained vehicle requires the determination of the

normal modes and frequencies of the unrestrained (or free–free) vehicle. The equivalent plate code, ELAPS, is used to

model the vehicle and compute the unrestrained mode shapes. A concise description of the equivalent plate model is

provided for completeness.
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In equivalent plate theory, the vehicle planform geometry is divided into multiple trapezoidal segments with cross-

sectional geometry specified by the analyst in the form of polynomial series in the global coordinates, x and y:

Zcðx; yÞ ¼
Xm

i¼0

Xn

j¼0

zijx
iyj ;

hbðx; yÞ ¼
Xm

i¼0

Xn

j¼0

hb
ijx

iyj ;

tkðx; yÞ ¼
Xm

i¼0

Xn

j¼0

tijx
iyj ; ð63Þ

where the physical description of the quantities used in Eq. (63) is shown in Fig. 14. The displacement field for the

equivalent plate is assumed to be of the form

ux ¼ ux0 	 z
@uz0

@x
þ zFx; ð64aÞ

uy ¼ uy0 	 z
@uz0

@y
þ zFy; ð64bÞ

uz ¼ uz0; ð64cÞ

where ux0; uy0; and uz0 are the middle surface displacements in the x; y; and z directions, respectively, and Fx;Fy are

additional degrees of freedom that are necessary for transverse shear deformation modelling. The reference surface
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Fig. 13. Actual and idealized X-33 configurations.
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displacements and transverse shear rotations are approximated by polynomial displacement functions as

ux0 ¼ /T
x qx; uy0 ¼ /T

y qy; uz0 ¼ UT
z qz; ð65aÞ

Ux ¼ UT
Ux

qUx
; Uy ¼ /T

Uy
qUy

; ð65bÞ

where fx; qx are (expressions for fy 	 qUy
are similar)

/T
x ¼ ½1; x; x2;y; y; xy; x2y;y; xI yJ �; ð66aÞ

qT
x ¼ ½qx00 ; qx10 ; qx20 ;y; qx01 ; qx11 ; qx21 ;y; qxIJ

�: ð66bÞ

In Eq. (66b), qx 	 qFy
are the unknown generalized coordinates, obtained from the solution of the global system of

equations.

Out-of-plane sections, such as the canted fins on the X-33, are accommodated by defining an additional displacement

system for the section and connecting the displacement systems with stiff springs to ensure displacement compatibility.

Boundary conditions may be enforced either by using springs or by setting the appropriate coefficients in the assumed

displacement function to zero. Taking advantage of symmetry, the vehicle shown in Fig. 13 is modelled in ELAPS by

defining only the right half-plane, with boundary conditions enforced at the vehicle center-line.

The global mass and stiffness matrices are assembled from the contributions of each structural component, and the

natural modes and frequencies of the unrestrained vehicle are then obtained by solving the linear eigenvalue problem.

For a comprehensive discussion of equivalent plate theory and recent enhancements; see Giles (1989, 1995).

3.6. Stability boundary condition

The stability boundaries for the generic hypersonic vehicle are determined from the eigenproblem generated from the

governing equations of motion. Therefore, the equations of motion, Eqs. (36) are rewritten in matrix form

Dt̂Dx ¼

Ar Arf Ar’f

O O I

A ’fr A’f f A’f’f

2
64

3
75Dx ¼ ADx; ð67Þ
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where

Dx ¼

Da

Dq̂

D#n1
^

D#n2Nm

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
; ð68Þ

and the submatrices of the partitioned matrix, A, are given in Appendix B. Solutions to Eqs. (67) can be written as

Dx ¼ nelt̂; ð69Þ

which produce the eigenvalue problem from which the aeroelastic stability boundaries are obtained

ðA	 lIÞn ¼ 0: ð70Þ
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Table 3

Natural frequencies (Hz) calculated from ELAPS

Mode no. Empty 10% fuel 50% fuel 100% fuel

1 5.21 5.17 5.1 5.01

2 5.53 5.43 5.23 5.12

3 11.1 9.8 7.05 5.61

4 12.46 11.34 8.48 6.78

5 13.48 12.93 10.1 8.07

6 13.91 13.51 10.71 8.67
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Fig. 15. Trim curves for fueled vehicle.
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The eigenvalues, ln ¼ zn þ ion; are calculated in an iterative manner. Starting at low values of the flight speed, V0x; the
eigenvalues are computed, and the process is repeated until the real part of any particular eigenvalue becomes zero. At

each iteration, the trim state is calculated using the current value of V0x: This process is repeated at a number of

altitudes representing the operational envelope of the vehicle.

3.7. Results for complete hypersonic vehicle in trimmed flight

The baseline hypersonic vehicle configuration chosen for this study has the following properties. The vehicle has a

length of 65 ft and a width of 65 ft (llb and w in Fig. 13, respectively). The vehicle is made of aluminum and has a

structural weight of 73 000 lbs: Fuel weight at takeoff is 210 000 lbs: Four fuel configurations were studied: the empty

vehicle, 10% fuel, 50% fuel and 100% fuel. Natural frequencies for each configuration were computed using ELAPS

and are shown in Table 3. As mentioned, the model was tuned to approximately match the frequencies with those from

a detailed NASTRAN model. These mode shapes are shown in (Nydick and Friedmann, 1999).

Typical trim curves for the generic hypersonic vehicle are given in Fig. 15 for the four different fuel configurations.

The trim angles are quite small at large Mach numbers; this is due to the large aerodynamic forces at these flight

conditions. Effect of the, c.g., location on the trim state was also considered (Nydick and Friedmann, 1999; Nydick,

2000). In these figures, x is the, c.g., location measured from the vehicle nose and is given as a fraction of total vehicle

length. The angle of attack decreases as the, c.g., moves rearward but the elevon angle increases to large values due to

the need to balance the increasing contribution to the moment from the main lifting body.

The flutter boundaries for the baseline vehicle configuration with four fuel conditions as well as a half-stiffness model

with two fuel conditions are shown in Fig. 16. The flutter Mach number is very high for the altitudes at which the

vehicle will fly in the hypersonic regime. For example, at 100 000 ft; Mc ¼ 160 for the empty vehicle. The fully fueled

vehicle is less stable, and flutter begins at around Mc ¼ 140: If the stiffness is reduced by a factor of two, Mc decreases

significantly. For the empty and fully fueled vehicles, it decreases to 86 and 68, respectively. The effect of, c.g., location

on the flutter boundaries is shown in Fig. 17 for the half-stiffness 100% fuel configuration. Moving the, c.g., rearward

initially reduces the stability but between Xcg ¼ 0:65 and Xcg ¼ 0:7 the stability begins to increase.

These results indicate that for the particular vehicle configuration selected, flutter at high speeds and high altitudes is

not possible at the operational speed of the vehicle, mainly because the dynamic pressure is low at very high altitudes.
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4. Concluding remarks

This paper presents aeroelastic analyses for two configurations: (a) a typical cross-section representing a double-

wedge airfoil in two-dimensional hypersonic flow and (b) a complete unrestrained generic hypersonic vehicle that

resembles a reusable launch vehicle. For the first configuration, the unsteady airloads were determined from piston

theory, the solution of the Euler and solution of the Navier–Stokes equations, and the primary objective is to assess the

differences in aeroelastic stability due to the various airload models.

The second configuration models the global aeroelastic behavior of a generic unrestrained vehicle, and the airloads

are based on linear piston theory. Based on the numerical results presented in the paper, the following conclusions can

be stated.

1. For certain combinations of high Mach numbers and offsets between elastic axis and midchord there can be large

differences between aeroelastic stability margins based on first- and third-order piston theory. Predictions of

aeroelastic stability based on linear piston theory can be unreliable, and the boundaries are not conservative.

2. The aeroelastic behavior of the double-wedge typical section at subcritical Mach numbers exhibits fairly similar

behavior when loads are generated from third-order piston theory, Euler or Navier–Stokes solutions. The frequency

and damping characteristics are also comparable. The differences increase substantially at, and beyond, the stability

boundary.

3. The stability boundaries predicted, for the double-wedge typical section, by Euler solutions are approximately

20–25% lower than those predicted by piston theory. The Navier–Stokes solutions are approximately 5% further

below the Euler-based solutions.

4. The various aeroelastic models predict similar trends due to changes in parameters such as: offsets between elastic

axis and midchord, wedge angle and static angle of attack for the double-wedge typical section.

5. For the entire vehicle, flutter margins can be sensitive to trim conditions and, c.g., location, which are determined to

a large extent by the amount of fuel in the vehicle.
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Appendix A

The various nondimensional quantities required for the equations of motion are given below

m̂ ¼
2m

r
N

Atllb
; Ĵ0yy ¼

2J0
yy

r
N

Atl
3
lb

;

t̂ ¼
%V0xt

llb
; Dt̂ð Þ ¼

d

dt̂
ð Þ;

M̂
g
k ¼

2M
g
k

r
N

Atllb
; #ok ¼

okllb

V̂0x

;

Da ¼
Dv0z

V0x

; Dq̂ ¼
llbDq

V0x

;

D#Zi ¼
DZi

llb
; D#ZNmþi

¼
DZNmþi

V̂0x

: ðA:1Þ

The flutter derivatives are defined next as follows:

Zv0z
¼ 1

2
r
N

%V0xAtCza; ðA:2aÞ

Zq ¼ 1
2
r
N

%V0xAtllbCzq; ðA:2bÞ

ZZi
¼

1

2llb
r
N

%V2
0xAtCzZi

; ðA:2cÞ

Z’Zi
¼ 1

2
r
N

%V0xAtCz’Zi
; ðA:2dÞ

Zde ¼
1
2
r
N

%V2
0xAtCzde ; ðA:2eÞ

Mv0z
¼ 1

2
r
N

%V0xAtllbCma; ðA:2fÞ

Mq ¼ 1
2
r
N

%V0xAtl
2
lbCmq; ðA:2gÞ

MZi
¼ 1

2
r
N

%V2
0xAtCmZi

; ðA:2hÞ

M’Zi
¼ 1

2
r
N

%V2
0xAtCm’Zi

; ðA:2iÞ

Mde ¼
1
2
r
N

%V2
0xAtllbCmde ; ðA:2jÞ

Q̂kv0z
¼ 1

2
r
N

%V0xAtCQka; ðA:2kÞ

Q̂kq ¼ 1
2
r
N

%V0xAtllbCQkq; ðA:2lÞ

Q̂kZl
¼

1

2llb
r
N

%V2
0xAtCQkZl

; ðA:2mÞ

Q̂k’Zl
¼ 1

2
r
N

%V0xAtCQk ’Zi
: ðA:2nÞ
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Appendix B
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